Scale Drift-Aware Large Scale Monocular SLAM
نویسندگان
چکیده
State of the art visual SLAM systems have recently been presented which are capable of accurate, large-scale and real-time performance, but most of these require stereo vision. Important application areas in robotics and beyond open up if similar performance can be demonstrated using monocular vision, since a single camera will always be cheaper, more compact and easier to calibrate than a multi-camera rig. With high quality estimation, a single camera moving through a static scene of course effectively provides its own stereo geometry via frames distributed over time. However, a classic issue with monocular visual SLAM is that due to the purely projective nature of a single camera, motion estimates and map structure can only be recovered up to scale. Without the known inter-camera distance of a stereo rig to serve as an anchor, the scale of locally constructed map portions and the corresponding motion estimates is therefore liable to drift over time. In this paper we describe a new near real-time visual SLAM system which adopts the continuous keyframe optimisation approach of the best current stereo systems, but accounts for the additional challenges presented by monocular input. In particular, we present a new pose-graph optimisation technique which allows for the efficient correction of rotation, translation and scale drift at loop closures. Especially, we describe the Lie group of similarity transformations and its relation to the corresponding Lie algebra. We also present in detail the system’s new image processing front-end which is able accurately to track hundreds of features per frame, and a filter-based approach for feature initialisation within keyframe-based SLAM. Our approach is proven via large-scale simulation and real-world experiments where a camera completes large looped trajectories.
منابع مشابه
LSD-SLAM: Large-Scale Direct Monocular SLAM
We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These ar...
متن کاملBayesian Scale Estimation for Monocular SLAM Based on Generic Object Detection for Correcting Scale Drift
This work proposes a new, online algorithm for estimating the local scale correction to apply to the output of a monocular SLAM system and obtain an as faithful as possible metric reconstruction of the 3D map and of the camera trajectory. Within a Bayesian framework, it integrates observations from a deep-learning based generic object detector and a prior on the evolution of the scale drift. Fo...
متن کاملStability-based Scale Estimation of Monocular SLAM for Autonomous Quadrotor Navigation
We propose a novel method to deal with the scale ambiguity in monocular SLAM based on control stability. We analytically show that (1) using unscaled state feedback from monocular SLAM for control can lead to system instability, and (2) there is a unique linear relationship between the absolute scale of the SLAM system and the control gain at which instability arises. Using this property, our m...
متن کاملRelocalization, Global Optimization and Map Merging for Monocular Visual-Inertial SLAM
The monocular visual-inertial system (VINS), which consists one camera and one low-cost inertial measurement unit (IMU), is a popular approach to achieve accurate 6-DOF state estimation. However, such locally accurate visualinertial odometry is prone to drift and cannot provide absolute pose estimation. Leveraging history information to relocalize and correct drift has become a hot topic. In th...
متن کاملMonocular SLAM for Autonomous Robots with Enhanced Features Initialization
This work presents a variant approach to the monocular SLAM problem focused in exploiting the advantages of a human-robot interaction (HRI) framework. Based upon the delayed inverse-depth feature initialization SLAM (DI-D SLAM), a known monocular technique, several but crucial modifications are introduced taking advantage of data from a secondary monocular sensor, assuming that this second came...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010